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Abstract—Wireless network scheduling and control techniques
(e.g., opportunistic scheduling) rely heavily on access to Channel
State Information (CSI). However, obtaining this information is
costly in terms of bandwidth, time, and power, and could result in
large overhead. Therefore, a critical question is how to optimally
manage network resources in the absence of such information.
To that end, we develop a cross-layer solution for downlink
cellular systems with imperfect (and possibly no) CSI at the
transmitter. We use rateless codes to resolve channel uncertainty.
To keep the decoding complexity low, we explicitly incorporate
time-average block-size constraints, and aim to maximize the
system utility. The block-size of a rateless code is determined
by both the network control decisions and the unknown CSI of
many time slots. Therefore, unlike standard utility maximization
problems, this problem can be viewed as a constrained partial
observed Markov decision problem (CPOMDP), which is known
to be hard due to the “curse of dimensionality.” However, by
using a modified Lyapunov drift method, we develop a dynamic
network control scheme, which yields a total network utility
within 𝑂(1/𝐿𝑎𝑣) of utility-optimal point achieved by infinite
block-size channel codes, where 𝐿𝑎𝑣 is the enforced value of the
time-average block-size of rateless codes. This opens the door of
being able to trade complexity/delay for performance gains in
the absence of accurate CSI. Our simulation results show that
the proposed scheme improves the network throughput by up to
68% over schemes that use fixed-rate codes.

I. INTRODUCTION

Over the past decade wireless scheduling and control tech-
niques (e.g., opportunistic scheduling) have been developed to
exploit opportunistic gains under the assumption of accurate
channel state information (CSI) [1], [2], [3], [4]. However,
obtaining this information is costly in terms of bandwidth,
time, and power, and could result in incurring large overhead.
Therefore, a critical question is “how to optimally manage
network resources in the absence of such information?” We
aim to answer this question by using rateless codes to jointly
control power allocation, scheduling, and channel coding for
downlink cellular systems with imperfect (and possibly no)
CSI at the transmitter.

Rateless codes are a class of channel codes that the code-
words (i.e., sequences of coded symbols or packets) with
higher code-rates are prefixes of lower-rate codes. The trans-
mitter progressively sends the coded packets to the receiver,
until the receiver successfully decodes the message and sends
an acknowledgment (ACK) to the transmitter. These codes are
“regret-free” in the sense that the transmitter never worries
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about that the selected modulation and code-rate are inap-
propriate such that the receiver cannot decode the message.
Therefore, rateless codes work well when the CSI is not
available at the transmitter due to limited-feedback and/or
interference [5].

The first practical realizations of low complexity rateless
codes are Luby Transform (LT) codes [6] and Raptor codes
[7] for erasure channels, which have been widely used for ap-
plication layer forward error correction (FEC). In the physical
layer, Raptor codes for binary symmetric channel (BSC) and
Gaussian channels were constructed in [8], [9], [10], where
belief propagation (BP) decoding algorithms were utilized
to realize a near-capacity performance over a wide range of
SNR. The complexity of the BP decoding algorithms increases
linearly with the number of coded packets (block-size) of
rateless codes [8]. Rateless codes that simultaneously achieve
the capacity of Gaussian channels at multiple SNRs were
developed in [11], [5]. They use a layered encoding and
successive decoding approach to achieve linear decoding com-
plexity. Recently, a new type of rateless codes, called spinal
codes, have been proposed [12], which use an approximate
maximum-likelihood (ML) decoding algorithm to achieve the
Shannon capacity of both BSC and Gaussian channels. The
complexity of this decoding algorithm is polynomial in the size
of message bits, but is still exponential in the block-size [13].1

In rateless codes, if the block-sizes are allowed to be arbi-
trarily large, the achievable rate will gradually approach the
ergodic capacity of the channel, at the expense of unbounded
decoding time. However, in practice, one cannot use rateless
codes with arbitrarily large block-sizes so as to maintain
manageable decoding time and complexity. Therefore, the
block-size of rateless codes can be viewed as a parameter to
control the throughput-complexity tradeoff.

We investigate the cross-layer design of downlink cellular
systems with imperfect (possibly no) CSI at the transmitter
that employ rateless codes to resolve channel uncertainty.
Most of the prior work on cross-layer network control with
imperfect CSI was centered on fixed-rate codes, e.g., [14],
[15], which can achieve Shannon capacity for a certain channel
state. However, these schemes suffer from channel outages
or inefficient use of available channel rates, since the CSI
information is not perfectly known at the transmitter. In

1In [13], the rate gap 𝜀 from the capacity is inversely proportional to the
block-size 𝐿, and the decoding complexity is exponential in 1/𝜀.
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contrast, rateless codes combat these issues by choosing their
decoding time on the fly, at the expense of additional decoding
complexity. Recently, scheduling and routing policies based on
rateless codes were proposed in [16], [17] for time-invariant
channel environments. Dynamic scheduling for incremental
redundancy HARQ was analyzed in [18] for fading channels,
which still requires feeding back ACK and realized mutual
information in each slot to update the transmitter queue.

We explicitly incorporate time-average block-size con-
straints to keep the decoding complexity low and maximize
the system utility. This utility maximization problem is chal-
lenging for two reasons: 1) the block-size of a rateless code
is affected by the network control decisions of many time
slots; and 2) the system is only partially observed because
the accurate CSI is not available. Therefore, unlike standard
utility maximization problems [1], [3], [19], [20], this problem
is a constrained partial observed Markov decision problem
(CPOMDP), which is generally intractable due to the “curse of
dimensionality.” To that end, the following are the intellectual
contributions of our paper:

∙ We formulate and solve a new utility maximization
problem for downlink cellular systems, which utilizes
rateless codes to resolve channel uncertainty. We de-
velop a low-complexity dynamic network control scheme
to attain a near-optimal solution to this problem. By
varying the power allocation and scheduling decisions
dynamically in each slot, our control scheme exploits the
imperfect CSI and realizes a multi-user diversity gain.
Our simulation results show that our scheme, by avoiding
channel outages and utilizing the full channel rate more
efficiently, improves the network throughput by up to
68%, compared with the schemes based on fixed-rate
codes. To the best of our knowledge, this is the first
cross-layer network control scheme for physical layer
rateless codes over time-varying noisy channels that does
not require accurate CSI information.

∙ One of our key technical contributions is in showing
that our network control scheme meets the time-average
block-size constraint of rateless codes. In doing so, we
prove that the second order moment of the block-size of
rateless codes is finite. This is accomplished by establish-
ing a large-deviation principle for the reception process of
rateless codes, which is difficult because the underlying
Markov chain of our scheme has an uncountable state
space.

∙ Another technical contribution is in developing a modi-
fied Lyapunov drift method to analyze the performance of
our network control scheme. Conventional Lyapunov drift
methods require minimizing the drift-plus-penalty of the
system in each slot. However, our network control scheme
generates an approximate drift-plus-penalty solution for
only a portion of time slots. Nevertheless, we show that
our scheme deviates from the time-average optimal utility
of infinite block-size channel codes by no more than
𝑂(1/𝐿𝑎𝑣), where 𝐿𝑎𝑣 is the enforced value of the time-
average block-size of rateless codes. This opens the door

of being able to trade complexity/delay for performance
gains. Moreover, the feedback overhead of our scheme is
at most 1/𝐿𝑎𝑣 of that for fixed-rate codes when no CSI
is available at the transmitter.

II. PROBLEM FORMULATION

We consider a time-slotted downlink cellular network with
one transmitter and 𝑆 receivers. The channels are assumed
to be block fading with a constant channel state within each
slot, and vary from one slot to another. The channel states of
slot 𝑡 are described as h[𝑡] = (ℎ1[𝑡], ⋅ ⋅ ⋅ , ℎ𝑆 [𝑡]). Each receiver
has perfect knowledge of its own CSI via channel estimation.
However, the transmitter only has access to an imperfect
CSI ĥ[𝑡] = (ℎ̂1[𝑡], ⋅ ⋅ ⋅ , ℎ̂𝑆 [𝑡]) due to channel fluctuation and
limited feedback. We assume that {ℎ𝑠[𝑡], ℎ̂𝑠[𝑡]} are i.i.d. across
time and independent across receivers, and the conditional
probability distribution 𝑓(ℎ𝑠∣ℎ̂𝑠) of ℎ𝑠[𝑡] based on ℎ̂𝑠[𝑡] is
available at the transmitter. This model has covered the special
cases of no CSI feedback, i.e., ℎ̂𝑠[𝑡] is independent of ℎ𝑠[𝑡],
and perfect CSI feedback, i.e., ℎ̂𝑠[𝑡] = ℎ𝑠[𝑡].

Let 𝑃 [𝑡] denote the transmission power in slot 𝑡. The
downlink transmissions are subject to a peak power constraint

0 ≤ 𝑃 [𝑡] ≤ 𝑃𝑝𝑒𝑎𝑘, (1)

for all 𝑡 and a time-average power constraint

lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝑃 [𝑡] ≤ 𝑃𝑎𝑣. (2)

The mutual information accumulated at receiver 𝑠 is denoted
by 𝐼(ℎ𝑠, 𝑃 ).We assume that 𝐼(ℎ𝑠, 𝑃 ) is a non-decreasing
and concave function of 𝑃 . Moreover, there exist some finite
𝐼max, 𝐶 > 0 such that

𝐼(ℎ𝑠, 0) = 0, 𝐼(ℎ𝑠, 𝑃𝑝𝑒𝑎𝑘) ≤ 𝐼max, (w.p.1) (3)

∂𝐸h{𝐼(ℎ𝑠, 𝑃 )∣ℎ̂𝑠}
∂𝑃

∣∣∣∣
𝑃=0

≤ 𝐶, ∀ℎ̂𝑠 (4)

where w.p.1 stands for “with probability 1”, the expectation
𝐸h is taken over the channel state h and the upper bound 𝐼max

is due to the limited dynamic range of practical RF receivers.

A. Rateless Codes and Transceiver Queues

We consider a general model for rateless codes proposed
in [21], [8]. At the transmitter, the encoder generates an
unlimited amount of coded packets for receiver 𝑠 from a
payload message with 𝑀𝑠 bits of information. One coded
packet is transmitted in each slot to a scheduled receiver.
The coded packets of one receiver may be transmitted over
non-sequential time slots due to user scheduling. Receiver
𝑠 collects packets until its accumulated mutual information
exceeds the threshold 𝑀𝑠(1 + 𝜖), which 𝜖 is an appropriate
constant, called reception overhead [8]. The value of 𝜖 is
chosen such that the decoder can decode the message with high
probability. For Raptor codes [8] and Strider [5] over Gaussian
channels, 𝜖 is nonzero for certain ranges of channel SNR. For
spinal codes [12], [13] over BSC and Gaussian channels, 𝜖
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can be arbitrarily close to 0 by choosing the code parameter
properly.

1) Decoder Queues: Each receiver maintains a decoder
queue 𝑅𝑠[𝑡], which represents the amount of mutual infor-
mation required for decoding the current message. Once 𝑅𝑠[𝑡]
becomes smaller than or equal to 𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡])𝐾, receiver 𝑠
can decode the current message at the end of slot 𝑡. Let 𝑛𝑠[𝑡]
denote the index of the current rateless code of receiver 𝑠, and
𝑐[𝑡] denote the scheduled receiver in slot 𝑡. The evolution of
the decoder queue 𝑅𝑠[𝑡] is determined by

𝑅𝑠[𝑡+ 1]=

⎧⎨⎩
𝑅𝑠[𝑡], if 𝑐[𝑡] ∕= 𝑠,
𝑅𝑠[𝑡]−𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡])𝐾, if 𝑐[𝑡] = 𝑠 and

𝑅𝑠[𝑡] > 𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡])𝐾,
(1 + 𝜖)𝑀𝑠[𝑛𝑠[𝑡] + 1], if 𝑐[𝑡] = 𝑠 and

𝑅𝑠[𝑡] ≤ 𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡])𝐾,
(5)

where 𝑀𝑠[𝑛] is the size of the message bits for the 𝑛th rateless
code of receiver 𝑠, 𝐾 is the number of symbols in each packet.
For notational simplicity, we omit 𝜖 in the rest of the paper.
Nevertheless, one can multiply 𝐼(ℎ𝑠, 𝑃 ) by 1/(1+𝜖) to derive
the results for non-zero 𝜖.

2) Encoder Queues: Since the transmitter has no access to
the decoder queue 𝑅𝑠[𝑡], it updates the encoder queue 𝑄𝑠[𝑡]
only based on the ACK events. Let us define an ACK variable
𝑎[𝑡]: if 𝑐[𝑡] = 𝑠 and 𝑅𝑠[𝑡] ≤ 𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡])𝐾, receiver 𝑠 can
decode the current rateless code and send an ACK to the
transmitter, hence 𝑎[𝑡] = 𝑠; if the transmitter receives no ACK
in slot 𝑡, then 𝑎[𝑡] = 0. Hence, the evolutions of the encoder
queue 𝑄𝑠[𝑡] are given by

𝑄𝑠[𝑡+ 1] = (𝑄𝑠[𝑡]−𝑀𝑠[𝑛𝑠[𝑡]]1{𝑎[𝑡]=𝑠})+ + 𝑥𝑠[𝑡], (6)

where 1{𝐴} is the indicator function of some event 𝐴, (⋅)+ =
max{⋅, 0}, and 𝑥𝑠[𝑡] is the arrival rate of the encoder queue.
We assume that the arrival rate 𝑥𝑠[𝑡] is bounded by

0 ≤ 𝑥𝑠[𝑡] ≤ 𝐷𝑠. (7)

The code index 𝑛𝑠[𝑡], which is available to both the transmitter
and receiver, evolves as

𝑛𝑠[𝑡+ 1] = 𝑛𝑠[𝑡] + 1{𝑎[𝑡]=𝑠}. (8)

B. Decoding Complexity Control
Define 𝑡𝑛,𝑠 = min{𝑡 ≥ 0 : 𝑛𝑠[𝑡] = 𝑛} as the time slot

that the first packet of the 𝑛th rateless code for receiver 𝑠 is
transmitted. From (5), the block-size of the 𝑛th rateless code
for receiver 𝑠 turns out to be:

𝐿𝑠[𝑛] =min

⎧⎨⎩
𝑡𝑛,𝑠+𝑙−1∑
𝑡=𝑡𝑛,𝑠

1{𝑐[𝑡]=𝑠} :

𝑀𝑠[𝑛]≤
𝑡𝑛,𝑠+𝑙−1∑
𝑡=𝑡𝑛,𝑠

1{𝑐[𝑡]=𝑠}𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡])𝐾, 𝑙 ≥ 1

⎫⎬⎭, (9)

which is the number of scheduled time slots for providing the
amount of mutual information no smaller than 𝑀𝑠[𝑛] bits.

As discussed in Section I, the block-size 𝐿𝑠[𝑛] has a
significant influence on the decoding time of rateless codes
over time-varying noisy channels. Thus, it is important that
we limit 𝐿𝑠[𝑛] so as to maintain an acceptable decoding

complexity. However, 𝐿𝑠[𝑛] in (9) cannot be specified before
transmission, because the channel states of future slots are
not available. In particular, the set of possible values for
𝐿𝑠[𝑛] may have an infinite span depending on the stochastic
model of the wireless channel states. Hence, in order to avoid
the undesirably long block-sizes and effectively control the
decoding complexity, we consider the following time-average
block-size constraints

lim
𝑁→∞

1

𝑁

𝑁∑
𝑛=1

𝐿𝑠[𝑛] = 𝐿𝑎𝑣, (10)

for 𝐿𝑎𝑣 ≥ 1 and all 𝑠 ∈ {1, ⋅ ⋅ ⋅ , 𝑆}.

C. Utility Maximization Problem

Define 𝑥𝑠 = lim inf𝑇→∞ 1
𝑇

∑𝑇−1
𝑛=0 𝑥𝑠[𝑡] as the time-average

rate that data arrives at the encoder queue of receiver 𝑠. Each
receiver is associated with a utility function 𝑈𝑠(𝑥𝑠), which
represents the “satisfaction” of receiving data at an average
rate of 𝑥𝑠 bits/packet. We assume that 𝑈𝑠(⋅) is a concave, non-
decreasing, continuous differentiable function, which satisfies
𝑈𝑠(0) = 0 and 𝑈 ′

𝑠(0) = 𝑏𝑠 < ∞.
Our goal is to solve

max
𝑥𝑠

𝑆∑
𝑠=1

𝑈𝑠(𝑥𝑠) (11)

s.t. x ∈ Λ,

where x = (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑆), and Λ is the time-average rate
region such that there exists a network control scheme
{𝑥𝑠[𝑡], 𝑐[𝑡], 𝑃 [𝑡],𝑀𝑠[𝑛]} which satisfies (1), (2), (5)-(10), and
the queues 𝑄𝑠[𝑡] are rate stable, i.e., [20]

lim
𝑡→0

𝑄𝑠[𝑡]

𝑡
= 0. (w.p.1) (12)

The aforementioned utility maximization problem (11) is
challenging for two reasons: 1) the block-size of rateless codes
𝐿𝑠[𝑛] in (9) is affected by the network control decisions
{𝑐[𝑡], 𝑃 [𝑡],𝑀𝑠[𝑛]} of many time slots; and 2) the system is
only partially observed because the accurate CSI ℎ𝑠[𝑡] is not
available. Therefore, the problem (11) belongs to the class
of constrained partially observed Markov decision problems
(CPOMDP), which are known to be inherently hard. However,
we are able to develop a dynamic network control scheme,
described next, to obtain an efficient solution to this problem.

III. CROSS-LAYER NETWORK CONTROL

We develop a dynamic network control scheme to solve the
utility maximization problem (11). We show that our scheme
deviates from the optimal utility of infinite block-size channel
codes by no more than 𝑂(1/𝐿𝑎𝑣), while still ensuring that the
time-average block-size of rateless codes is equal to 𝐿𝑎𝑣.

A. Network Control Algorithm

We first define virtual queues for the time-average con-
straints (2) and (10), i.e.,

𝑍[𝑡+ 1] = (𝑍[𝑡]− 𝑃𝑎𝑣)
+ + 𝑃 [𝑡], (13)

𝑊𝑠[𝑛+ 1] = 𝑊𝑠[𝑛] + 𝐿𝑠[𝑛]− 𝐿𝑎𝑣. (14)



4

Since the block-size 𝐿𝑠[𝑛] in (9) is affected by the network
control decisions {𝑐[𝑡], 𝑃 [𝑡],𝑀𝑠[𝑛]} and the unknown CSI
of many time slots, conventional Lyapunov drift methods
for enforcing the time-average block-size constraints (10)
will result in solving a difficult partially observable Markov
decision problem.

Rather, we develop a low-complexity encoding control
method that increases the message size of rateless codes
𝑀𝑠[𝑛], if 𝑊𝑠[𝑛] ≥ 0; and decreases 𝑀𝑠[𝑛], if 𝑊𝑠[𝑛] < 0.
The network control scheme {𝑥𝑠[𝑡], 𝑃 [𝑡], 𝑐[𝑡],𝑀𝑠[𝑛]} is de-
termined by the following algorithm:

Network Control Algorithm (NCA):
∙ Encoding control: The message size 𝑀𝑠[𝑛] is given by:

𝑀𝑠[𝑛+1]=

⎧⎨⎩ (𝑀𝑠[𝑛]− 𝛿)+, if 𝑊𝑠[𝑛] ≥ 0,
min{𝑀𝑠[𝑛] + 𝛿,𝑀max},

if 𝑊𝑠[𝑛] < 0,
(15)

where 𝛿 > 0 and 𝑀max = 𝐼max𝐿𝑎𝑣𝐾 are algorithm
parameters.

∙ Power allocation and scheduling:
Find the receiver 𝜍[𝑡] that satisfies

𝜍[𝑡] = argmax
𝑠∈{1,...,𝑆}

𝑄𝑠[𝑡]𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃𝑠[𝑡])∣ℎ̂𝑠[𝑡]}𝐾

− 𝑍[𝑡]𝑃𝑠[𝑡], (16)

where 𝑃𝑠[𝑡] is determined by

𝑃𝑠[𝑡] = argmax
𝑃∈[0,𝑃𝑝𝑒𝑎𝑘]

𝑄𝑠[𝑡]𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃 )∣ℎ̂𝑠[𝑡]}𝐾−𝑍[𝑡]𝑃.

(17)
The power allocation and scheduling scheme is described
as follows: If the transmission power 𝑃𝜍[𝑡][𝑡] is within a
small neighbourhood of zero, i.e., 𝑃𝜍[𝑡][𝑡] ∈ [0, 𝜀), no
receiver is scheduled and 𝑐[𝑡] = 𝑃 [𝑡] = 0. Otherwise, if
𝑃𝜍[𝑡][𝑡] ≥ 𝜀, receiver 𝜍[𝑡] is scheduled, i.e., 𝑐[𝑡] = 𝜍[𝑡]
and 𝑃 [𝑡] = 𝑃𝜍[𝑡][𝑡]. Here, 𝜀 > 0 is a very small constant
parameter.

∙ Rate control: The arrival rate of the encoder queue is
determined by

𝑥𝑠[𝑡] = argmax
𝑥∈[0,𝐷𝑠]

𝑉 𝑈𝑠(𝑥)− 𝑥2 − 2𝑄𝑠[𝑡]𝑥, (18)

where 𝑉 > 0 is a constant algorithm parameter.
∙ Queue update: Update the queues 𝑅𝑠[𝑡], 𝑄𝑠[𝑡], 𝑍[𝑡], and

𝑊𝑠[𝑛] according to (5), (6), (13), and (14), respectively.
In Algorithm NCA, we introduced a transmission power lower
bound 𝑃 [𝑡] ≥ 𝜀, where 𝜀 > 0 is an arbitrary small constant.
This additional power lower bound is useful for establishing
the stability of 𝑊𝑠[𝑛] in Section III-B. The impact of this
power lower bound becomes negligible as 𝜀 tends to 0+.

B. Performance Analysis

We analyze the performance of Algorithm NCA in two
steps: In Step One, we show that the virtual queue 𝑊𝑠[𝑛] is
rate stable, and thereby the time-average block-size constraint
(10) is satisfied with probability 1. In Step Two, we show
that the performance of our scheme deviates from the optimal
utility by no more than 𝑂(1/𝐿𝑎𝑣).

1) Step One: The key idea for proving the stability of
𝑊𝑠[𝑛] is to show that the second order moment of the block-
size 𝐸{𝐿𝑠[𝑛]

2} is upper bounded uniformly for all 𝑛 and 𝑠,
which is stated in the following lemma:

Lemma 1. Let {𝑃 [𝑡], 𝑥𝑠[𝑡], 𝑐[𝑡],𝑀𝑠[𝑛]} be determined by
Algorithm NCA. There then exists some 𝐺 > 0 such that

𝐸{𝐿𝑠[𝑛]
2} ≤ 𝐺, ∀𝑛, 𝑠. (19)

In order to prove Lemma 1, we need to establish a large-
derivation principle for the mutual information accumula-
tion process expressed in (9). However, there is a technical
difficulty: the mutual information 𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡]) is non-i.i.d.
in the scheduled slots of the rateless code. In particular,
the underlying Markov chain of Algorithm NCA has an
uncountable state space, which makes it difficult to check if
a large derivation principle holds [22]. However, by using the
transmission power lower bound 𝑃 [𝑡] ≥ 𝜀 and some additional
manipulations, we can obtain a lower bound on 𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡])
that is i.i.d. across the scheduled slots.

Proof: Let us consider the 𝑛th rateless code of re-
ceiver 𝑠. Suppose that the 𝐿𝑠[𝑛] packets of this rateless
code are transmitted in the time slots 𝑡 ∈ {𝑡𝑛,𝑠,1 =
𝑡𝑛,𝑠, 𝑡𝑛,𝑠,2, ⋅ ⋅ ⋅ , 𝑡𝑛,𝑠,𝐿𝑠[𝑛]}. The tail probability of Pr{𝐿𝑠[𝑛] >
𝑙} satisfies

Pr{𝐿𝑠[𝑛] > 𝑙}

= Pr

{ 𝑙∑
𝜏=1

𝐼(ℎ𝑠[𝑡𝑛,𝑠,𝜏 ], 𝑃 [𝑡𝑛,𝑠,𝜏 ])𝐾 < 𝑀𝑠[𝑛]

}
(𝑎)

≤ Pr

{ 𝑙∑
𝜏=1

𝐼(ℎ𝑠[𝑡𝑛,𝑠,𝜏 ], 𝑃 [𝑡𝑛,𝑠,𝜏 ])𝐾 < 𝑀max

}
(𝑏)

≤ Pr

{ 𝑙∑
𝜏=1

𝐼(ℎ𝑠[𝑡𝑛,𝑠,𝜏 ], 𝜀)𝐾 < 𝑀max

}
, (20)

where step (𝑎) is due to 𝑀𝑠[𝑛] ≤ 𝑀max in (15) and step
(𝑏) is due to the transmission power lower bound 𝑃 [𝑡] ≥ 𝜀.
The mutual information lower bound 𝐼(ℎ𝑠[𝑡], 𝜀) is still non-
i.i.d. across the scheduled slots, due to receiver scheduling.
Therefore, for large enough 𝑙, we make further modifications:

Pr{𝐿𝑠[𝑛] > 𝑙}
(𝑐)

≤ Pr

{ 𝑙∑
𝜏=1

min
𝑢

[𝐼(ℎ𝑢[𝑡𝑛,𝑠,𝜏 ], 𝜀)]𝐾 < 𝑀max

}
(𝑑)

≤ Pr

{ 𝑙∑
𝜏=1

min
𝑢

[𝐼(ℎ𝑢[𝑡𝑛,𝑠,𝜏 ], 𝜀)]− 𝑙𝑎 < 0

}
, (21)

where step (𝑐) is due to min𝑢{𝐼(ℎ𝑢[𝑡], 𝜀)} ≤ 𝐼(ℎ𝑠[𝑡], 𝜀) and
step (𝑑) due to the choice of 𝑙 ≥ 2𝑀max

𝐸{min𝑢[𝐼(ℎ𝑢,𝜀)]}𝐾 and 𝑎 =

1/2𝐸{min𝑢[𝐼(ℎ𝑢, 𝜀)]}. Here, by choosing the smallest mutual
information over all receivers, min𝑢[𝐼(ℎ𝑢[𝑡], 𝜀)] is i.i.d. across
the scheduled slots. According to (3), there exists some 𝜃 > 0
such that

𝐸{𝑒𝜃min𝑢[𝐼(ℎ𝑢,𝜀)]} < ∞. (22)

Therefore, we can use the large derivation theory [23] to show
that there exist some 𝛾(𝑎) > 0 and 𝑁 , such that the inequality

Pr

{ 𝑙∑
𝜏=1

min
𝑢

[𝐼(ℎ𝑢[𝑡𝑛,𝑠,𝜏 ], 𝜀)]− 𝑙𝑎 < 0

}
< 𝑒−𝑙𝛾(𝑎) (23)
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holds for all 𝑙 > 𝑁 . Therefore, we have

𝐸{𝐿𝑠[𝑛]
2}

=

∞∑
𝑙=1

[
(𝑙 + 1)2 − 𝑙2

]
Pr{𝐿[𝑛] > 𝑙}

≤
𝑁∑
𝑙=1

[
(𝑙 + 1)2−𝑙2

]
+

∞∑
𝑙=𝑁+1

[
(𝑙 + 1)2−𝑙2

]
Pr{𝐿𝑠[𝑛] > 𝑙}

≤ (𝑁 + 1)2 +

∞∑
𝑙=𝑁+1

(𝑙 + 1)2𝑒−𝑙𝛾(𝑎)

≤ (𝑁 + 1)2 +

∫ ∞

0

(𝜏 + 1)2𝑒−(𝜏−1)𝛾(𝑎)𝑑𝜏. (24)

Since both terms of (24) are upper bounded, there must exist
some 𝐺 > 0 such that

𝐸{𝐿𝑠[𝑛]
2} ≤ 𝐺. (25)

Since the distribution of min𝑢[𝐼(ℎ𝑢[𝑡𝑛,𝑠,𝜏 ], 𝜀)] does not rely
on any particular choice of 𝑛 and 𝑠, (23)-(25) hold uniformly
for all 𝑛 and 𝑠, and the asserted statement is proved.

We now analyze the evolution of the virtual queue 𝑊𝑠[𝑛]:
Suppose 𝑊𝑠[𝑛] < 0 and 𝑊𝑠[𝑛 + 1] ≥ 0. By (15), the
message size 𝑀𝑠[𝑛] starts to decrease. As long as 𝑊𝑠[𝑛] ≥ 0,
𝑀𝑠[𝑛] keeps decreasing. Once 𝑀𝑠[𝑛] decreases to 0, we have
𝐿𝑠[𝑛] = 1 ≤ 𝐿𝑎𝑣 and 𝑊𝑠[𝑛] stops increasing. Since the step
size of (15) is 𝛿, 𝑊𝑠[𝑛] either stops increasing or drops back to
𝑊𝑠[𝑛] < 0, within 𝜅 = ⌈𝑀max/𝛿⌉ rateless codes. Therefore,
the virtual queue 𝑊𝑠[𝑛] is upper bounded by

𝑊𝑠[𝑛+ 𝜅] ≤
𝜅∑

𝑚=0

𝐿𝑠[𝑛+𝑚], ∀ 𝑛. (26)

On the other hand, if 𝑊𝑠[𝑛] ≥ 0 and 𝑊𝑠[𝑛+ 1] < 0, by (15),
the message size 𝑀𝑠[𝑛] starts to increase. As long as 𝑊𝑠[𝑛] <
0, 𝑀𝑠[𝑛] keeps increasing. Once 𝑀𝑠[𝑛] reaches 𝑀max, we
have 𝐿[𝑛] ≥ 𝐿𝑎𝑣, since 𝐼(ℎ𝑠, 𝑃 ) ≤ 𝐼max. Therefore, within 𝜅
rateless codes, 𝑊𝑠[𝑛] either stops decreasing or grows up to
𝑊𝑠[𝑛] ≥ 0. Therefore, 𝑊𝑠[𝑛] is lower bounded by

𝑊𝑠[𝑛+ 𝜅] ≥ −(𝜅+ 1)𝐿𝑎𝑣, ∀ 𝑛. (27)

Using these observations, we show the following theorem:

Theorem 1. Let {𝑃 [𝑡], 𝑥𝑠[𝑡], 𝑐[𝑡],𝑀𝑠[𝑛]} be determined by
Algorithm NCA, then the virtual queues 𝑊𝑠[𝑛] are rate stable,
i.e.,

lim
𝑛→∞

𝑊𝑠[𝑛]

𝑛
= 0. (w.p.1) (28)

Hence, the time-average constraint (10) is satisfied with
probability 1.

Proof: If 𝑊𝑠[𝑛 + 𝜅] ≥ 0, according to (26) and Lemma
1, the second moment of 𝑊𝑠[𝑛] is upper bounded by

𝐸{𝑊𝑠[𝑛+𝜅]2}≤𝐸

{[ 𝜅∑
𝑚=0

𝐿𝑠[𝑛+𝑚]

]2}
≤(𝜅+1)2𝐺. (29)

By (27) and (29), there exists some 𝐷 > 0 such that

𝐸{𝑊𝑠[𝑛]
2} ≤ 𝐷, ∀ 𝑛.

By Markov’s inequality, for any 𝜀 > 0, we have

Pr

{
𝑊𝑠[𝑛]

𝑛
> 𝜀

}
≤ 𝐸{𝑊𝑠[𝑛]

2}
𝑛2𝜀2

≤ 𝐷

𝑛2𝜀2
,

and thus
∞∑

𝑛=1

Pr

{
𝑊𝑠[𝑛]

𝑛
> 𝜀

}
< ∞.

Then, (28) follows from the Borel-Cantelli lemma [23].
2) Step Two: We now utilize a modified Lyapunov drift

method to analyze the performance of Algorithm NCA. One
difficulty is that the rate region Λ is not directly accessible.
For this, we construct a larger rate region Λ𝑜𝑢𝑡 satisfying Λ ⊆
Λ𝑜𝑢𝑡, and show that the performance of Algorithm NCA is
within 𝑂(1/𝐿𝑎𝑣) from the optimum of the following problem:

max
𝑥𝑠

𝑆∑
𝑠=1

𝑈𝑠(𝑥𝑠) (30)

s.t. x ∈ Λ𝑜𝑢𝑡.

To construct the outer rate region Λ𝑜𝑢𝑡, we consider the
following genie-assisted policy: The transmitter has access
to the perfect CSI h[𝑡] for coding control, while the power
allocation and scheduling scheme is determined by only the
imperfect CSI ĥ[𝑡]. This policy achieves the rate region Λ𝑜𝑢𝑡
such that for each point x = (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑆) ∈ Λ𝑜𝑢𝑡 there exists
a network control scheme {𝑐[𝑡], 𝑃 [𝑡]} satisfying

𝑥𝑠 ≤ lim inf
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

[
𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡])𝐾1{𝑐[𝑡]=𝑠}

]
, (31)

0 ≤ 𝑥𝑠 ≤ 𝐷𝑠, (32)

lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝑃 [𝑡] ≤ 𝑃𝑎𝑣, (33)

0 ≤ 𝑃 [𝑡] ≤ 𝑃𝑝𝑒𝑎𝑘, (34)

where {𝑐[𝑡], 𝑃 [𝑡]} is determined by ĥ[𝑡], but not h[𝑡]. We note
that one can choose 𝑀𝑠[𝑛] = 𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡])𝐾 in the genie-
assisted policy such that the mutual information in each slot
is fully utilized. An alternative to this genie-assisted policy
is to use infinite block-size channel codes to fully exploit the
mutual information, which achieves the same rate region Λ𝑜𝑢𝑡,
but results in unbounded decoding time. In [24], we prove that
Λ ⊆ Λ𝑜𝑢𝑡. Hence, the performance of problem (11) is upper
bounded by (30). Note that the key issue of fixed-rate codes
with imperfect CSI are that the mutual information is under-
utilized if the transmitter has imperfect CSI and the code-rate
is different from the mutual information 𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡])𝐾.

Another difficulty is that 𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡]) is not directly asso-
ciated to the service process of the encoder queue 𝑄𝑠[𝑡]. For
this, we define an auxiliary queue

𝑌𝑠[𝑡] = 𝑄𝑠[𝑡] +𝑅𝑠[𝑡]−𝑀𝑠[𝑛𝑠[𝑡]]. (35)

From (5) and (6), the evolution of 𝑌𝑠[𝑡] is given by

𝑌𝑠[𝑡+ 1] =
(
𝑌𝑠[𝑡]− 1{𝑐[𝑡]=𝑠,𝑎[𝑡]=0}𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡])𝐾

− 1{𝑎[𝑡]=𝑠}𝑅𝑠[𝑡]
)+

+ 𝑥𝑠[𝑡]. (36)

Therefore, the service process of 𝑌𝑠[𝑡] is given by the mutual
information 𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡])𝐾, if 𝑐[𝑡] = 𝑠 and 𝑎[𝑡] = 0 (i.e., the
scheduled slot is not the last reception slot of a rateless code).
This motives us to utilize the auxiliary queue 𝑌𝑠[𝑡] to construct
the Lyapunov drift.
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Now, we still need to solve the following two remaining
difficulties: 1) the transmitter only has access to 𝑄𝑠[𝑡] but not
the auxiliary queue 𝑌𝑠[𝑡]; and 2) the obtained power allocation
and scheduling scheme is optimal only when 𝑐[𝑡] = 𝑠 and
𝑎[𝑡] = 0. The first problem is solved by a delayed queue
analysis. Since 𝑄𝑠[𝑡] − 𝑀max ≤ 𝑌𝑠[𝑡] ≤ 𝑄𝑠[𝑡], we can
show that replacing 𝑌𝑠[𝑡] with 𝑄𝑠[𝑡] does not affect the
attained performance significantly. Second, although the power
allocation and scheduling scheme is not optimal when either
𝑐[𝑡] = 0 (i.e., no user is scheduled due to the transmission
power lower bound) or 𝑎[𝑡] ≥ 1 (i.e., the scheduled slot is
the last reception slot of a rateless code), we show that the
performance loss in these two cases are not significant, if
𝜀 tends to 0+ and 𝐿𝑎𝑣 is not too small. In particular, the
following statement holds:

Lemma 2. Define the Lyapunov function Ψ(𝑌𝑠, 𝑍) =∑𝑆
𝑠=1 𝑌

2
𝑠 + 𝑍2. If 𝑄𝑠[0] = 𝑍[0] = 0 and problem (30) has

a feasible solution based on ĥ[𝑡] and {𝑃 [𝑡], 𝑥𝑠[𝑡], 𝑐[𝑡],𝑀𝑠[𝑛]}
are determined by Algorithm NCA, then

𝐸

{
Ψ(𝑌𝑠[𝑡+1], 𝑍[𝑡+1])−Ψ(𝑌𝑠[𝑡], 𝑍[𝑡])

− 𝑉

𝑆∑
𝑠=1

𝑈𝑠(𝑥𝑠[𝑡])

∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}

≤𝑉 𝐵1𝜀+𝑉 𝐵2𝐸{1{𝑎[𝑡]≥1}∣𝑄𝑠[𝑡], 𝑍[𝑡]}+𝐵3−𝑉

𝑆∑
𝑠=1

𝑈𝑠(𝑥
∗
𝑠),(37)

where
∑𝑆

𝑠=1 𝑈𝑠(𝑥
∗
𝑠) is the optimal value of problem (30) and

𝐵1 = max
{𝑠=1,⋅⋅⋅ ,𝑆}

{𝑏𝑠}𝐶𝐾,

𝐵2 = max
{𝑠=1,⋅⋅⋅ ,𝑆}

{𝑏𝑠}𝐼max𝐾,

𝐵3 = 𝐼2max𝐾
2+𝑃 2

𝑝𝑒𝑎𝑘+𝑃 2
𝑎𝑣+

𝑆∑
𝑠=1

𝐷2
𝑠 + 2𝑀max𝐼max𝐾.

Proof: See Appendix A.
In the proof of Lemma 2, we have used the following result:

Lemma 3. If 𝑄𝑠[0] = 𝑍[0] = 0 and {𝑃 [𝑡], 𝑥𝑠[𝑡], 𝑐[𝑡], 𝑀𝑠[𝑛]}
are determined by Algorithm NCA, then the queue backlogs
𝑄𝑠[𝑡] and 𝑍[𝑡] satisfy

𝑄𝑠[𝑡] ≤ 𝑏𝑠𝑉

2
, ∀ 𝑡 ≥ 0, (38)

𝑍[𝑡] ≤ max
𝑠

{𝑏𝑠}𝐶𝑉𝐾

2
+ 𝑃𝑝𝑒𝑎𝑘, ∀ 𝑡 ≥ 0. (39)

Therefore, the encoder queues 𝑄𝑠[𝑡] are rate stable, and the
time-average power constraint (2) holds with probability 1.

The proof of Lemma 3 is provided in our technical re-
port [24] and is omitted here due to space limitations.

Lemma 2 suggests that Algorithm NCA has a performance
close to that of problem (30), if 𝜀 is very small, 𝑉 is very
large, and the ACK event 𝑎[𝑡] ≥ 1 does not occur too often.
On the other hand, according to Theorem 1, we can obtain

lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

1{𝑎[𝑡]≥1} ≤ 1

𝐿𝑎𝑣
, (w.p.1) (40)

and thereby the ACK event 𝑎[𝑡] ≥ 1 only happens in no more
than 1/𝐿𝑎𝑣 time slots. In [24], we substitute (40) into Lemma
2 to establish the following theorem:

Theorem 2. If 𝑄𝑠[0] = 𝑍[0] = 0 and problem (30) has a
feasible solution based on ĥ[𝑡] and {𝑃 [𝑡], 𝑥𝑠[𝑡], 𝑐[𝑡],𝑀𝑠[𝑛]}
are determined by Algorithm NCA, then the achieved time-
average rate 𝑥𝑠 satisfies

𝑆∑
𝑠=1

𝑈𝑠 (𝑥𝑠) ≥
𝑆∑

𝑠=1

𝑈𝑠(𝑥
∗
𝑠)−𝐵1𝜀− 𝐵2

𝐿𝑎𝑣
−𝐵3

𝑉
, (w.p.1) (41)

where 𝑥∗
𝑠 , 𝐵1, 𝐵2, and 𝐵3 are defined in (37).

Thus, by setting 𝜀 → 0+ and increasing the values of 𝑉
and 𝐿𝑎𝑣, we can get arbitrarily close to the optimal system
utility of problem (30).

Theorem 2 allows trading complexity/delay for performance
gains in the absence of accurate CSI: For a large 𝑉 parameter,
the optimal network utility of infinite block-size codes is
reached as O(1/𝐿𝑎𝑣), where 𝐿𝑎𝑣 is the determinant of the
decoding complexity for our rateless code scheme. On the
other hand, conventional schemes for fixed-rate codes can only
get close to the performance upper bound when the difference
between h[𝑡] and ĥ[𝑡] is very small.

We finally note that our scheme significantly reduces the
feedback overhead (in terms of bandwidth, time, and power)
when no CSI is available to the transmitter: According to
(40), the amount of ACK feedback in our scheme is at most
1/𝐿𝑎𝑣 of those for fixed-rate codes, where an ACK feedback
is required in each slot.

IV. SIMULATION RESULTS

We present simulation results of Algorithm NCA. In our
theoretical analysis, we assume that {ℎ𝑠[𝑡], ℎ̂𝑠[𝑡]} are i.i.d.
across time. Here, we check if our proposed Algorithm NCA
is robust for time-correlated wireless channels. To illustrate
this, we consider a first order autoregressive (AR) Rayleigh
fading process in our simulations. In particular, the channel
states {ℎ𝑠[𝑡], ℎ̂𝑠[𝑡]} are modeled by

ℎ𝑠[𝑡+ 1] =
√
0.1ℎ𝑠[𝑡] +

√
0.9𝑛𝑠[𝑡], (42)

ℎ̂𝑠[𝑡] =
√
𝜌ℎ𝑠[𝑡] +

√
1− 𝜌�̂�𝑠[𝑡], (43)

where 𝑛𝑠[𝑡] and �̂�𝑠[𝑡] are i.i.d. circular-symmetric zero-mean
complex Gaussian processes, and 𝜌 represents the accuracy of
the imperfect CSI ℎ̂𝑠[𝑡]. The mutual information is expressed
by 𝐼(ℎ𝑠, 𝑃 ) = max{log2(1+ ∣ℎ𝑠∣2𝑃 ), 𝐼max}, where the addi-
tional upper bound 𝐼max is due to the limited dynamic range
of practical RF receivers. The utility function is determined
by 𝑈𝑠(𝑥𝑠) = ln(1 + 𝑥𝑠/𝐾). The average SNR is given by
𝐸{∣ℎ𝑠[𝑡]∣2}𝑃𝑎𝑣 = 12 dB. The results for the case of i.i.d.
channel is similar, and is omitted here due to space limitation.

Two reference strategies are considered for the purpose of
performance comparison: The first one uses infinite block-
size channel codes (or equivalently the genie-assisted policy
in Section III-B2), which achieves the performance upper
bound in problem (30), but is infeasible to implement in
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Fig. 1. Simulation results of total network utility versus the algorithm
parameter 𝑉 for 𝐿𝑎𝑣 = 10, 𝑆 = 3 and 𝜌 = 0.8.
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Fig. 2. Simulation results of total network utility versus the time-average
block-size 𝐿𝑎𝑣 for 𝑉 = 10000𝐾, 𝑆 = 3 and 𝜌 = 0.8.

a practical system. The second one uses fixed-rate channel
codes, where the code-rate 𝑅 is selected to maximize the
goodput 𝑅Pr{𝐼(ℎ𝑠, 𝑃 )𝐾 ≥ 𝑅∣ℎ̂𝑠}. Network control schemes
are designed for these two reference strategies to maximize
their corresponding total network utility.

Figure 1 compares the results of total network utility versus
the algorithm parameter 𝑉 for 𝐿𝑎𝑣 = 10, 𝑆 = 3 and 𝜌 = 0.8,
where 𝐾 is the number of symbols in each packet, and “CSIT”
stands for CSI at the transmitter. The performance of rateless
codes first improves as 𝑉 increases, and then tends to a
constant value. For sufficiently large 𝑉 , the total network
utility of rateless codes is much larger than that of fixed-rate
codes and is quite close to that of infinite block-size codes.
Figure 2 illustrates the complexity/delay vs. utility tradeoff,
as it plots the total network utility versus the time-average
block-size 𝐿𝑎𝑣 for 𝑉 = 10000𝐾, 𝑆 = 3 and 𝜌 = 0.8.
The performance of rateless codes improves as 𝐿𝑎𝑣 increases.
When 𝐿𝑎𝑣 ≥ 2, rateless codes can realize a larger network
utility than fixed-rate codes that are also optimized for this
system. Figure 3 provides the results of total network utility
versus the CSI accuracy 𝜌 for 𝑉 = 10000𝐾, 𝐿𝑎𝑣 = 10 and
𝑆 = 3. The performance of all three strategies improves as
𝜌 increases. When 𝜌 = 0, the cumulative spectral efficiency
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Fig. 3. Simulation results of total network utility versus the CSI accuracy 𝜌
for 𝑉 = 10000𝐾, 𝐿𝑎𝑣 = 10 and 𝑆 = 3.
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Fig. 4. Simulation results of total network utility versus the number of
receivers 𝑆 for 𝑉 = 10000𝐾, 𝐿𝑎𝑣 = 10 and 𝜌 = 0.8.

of rateless codes and fixed-rate codes are given by 3.246
bits/s/Hz and 1.93 bits/s/Hz, respectively, which corresponds
to a throughput improvement of 68%. When 𝜌 = 1, the CSI
h[𝑡] is perfectly known to the transmitter, and we modify the
encoding control scheme (15) by choosing the message size
as 𝑀𝑠[𝑛] = 𝐼(ℎ𝑠[𝑡𝑛,𝑠], 𝑃 [𝑡𝑛,𝑠])𝐾 to eliminate the rate loss as
in problem (30). By this, all three strategies achieve the same
performance. Finally, Fig. 4 shows the network utility results
versus the receiver number 𝑆 for 𝑉 = 10000𝐾, 𝐿𝑎𝑣 = 10
and 𝜌 = 0.8. The performance of all three strategies improves
as 𝑆 increases, which exhibits a multi-user diversity gain.

V. CONCLUSION

We have attempted to answer an important question of how
to appropriately manage network resources in the absence of
(or with imperfect) CSI. To that end, we developed a cross-
layer solution for downlink cellular systems with imperfect
CSI at the transmitter, which utilize rateless codes to resolve
channel uncertainty. To keep the decoding complexity low, we
explicitly incorporated time-average block-size constraints in
our formulation, subject to which we maximized the system
utility. Our network control scheme jointly controls trans-
mission power, scheduling, and channel coding, and exhibits
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an elegant utility-complexity tradeoff. Our simulation results
suggest that rateless codes can improve the network throughput
by up to 68% in certain scenarios, compared with solutions
that maximize the utility using fixed-rate codes.

APPENDIX A
PROOF OF Lemma 2

We need to use the following lemma:

Lemma 4. If the problem (30) has a feasible solution and ĥ[𝑡]
is i.i.d. across time, then for any 𝛿 > 0 there is an ĥ−only
stationary and randomized control scheme {𝑥∗

𝑠 , 𝑃
∗[𝑡], 𝑐∗[𝑡]}

that satisfies 0 ≤ 𝑃 ∗[𝑡] ≤ 𝑃𝑝𝑒𝑎𝑘, 0 ≤ 𝑥∗
𝑠 ≤ 𝐷𝑠, and

𝑜𝑝𝑡∗ ≤
𝑆∑

𝑠=1

𝑈𝑠(𝑥
∗
𝑠) + 𝛿, (44)

𝑥∗
𝑠 ≤ 𝐸

{
𝐼(ℎ𝑠[𝑡], 𝑃

∗[𝑡])𝐾1{𝑐∗[𝑡]=𝑠}
}
+ 𝛿, (45)

𝐸{𝑃 ∗[𝑡]} ≤ 𝑃𝑎𝑣 + 𝛿, (46)

where 𝑜𝑝𝑡∗ is the maximum network utility of problem (30).

Proof: The proof of Lemma 4 is provided in our technical
report [24].

Proof of Lemma 2: By (13) and (36), we can show that

𝑍[𝑡+ 1]2 − 𝑍[𝑡]2 ≤ 𝑃 2
𝑝𝑒𝑎𝑘 + 𝑃 2

𝑎𝑣 + 2𝑍[𝑡]𝑃 [𝑡]− 2𝑍[𝑡]𝑃𝑎𝑣,

and

𝑌𝑠[𝑡+ 1]2 − 𝑌𝑠[𝑡]
2

≤ 𝐼2max𝐾
21{𝑐[𝑡]=𝑠}+𝑥𝑠[𝑡]

2+2𝑌𝑠[𝑡]𝑥𝑠[𝑡]−2𝑌𝑠[𝑡]𝑅𝑠[𝑡]1{𝑎[𝑡]=𝑠}
− 2𝑌𝑠[𝑡]𝐼(ℎ𝑠[𝑡], 𝑃 [𝑡])𝐾1{𝑐[𝑡]=𝑠,𝑎[𝑡]=0}.

In Algorithm NCA, if 𝑐[𝑡] = 0, we have 𝑃 [𝑡] = 0.
Otherwise, if 𝑐[𝑡] = 𝑠 ≥ 1, we can obtain 𝑃 [𝑡] =
𝑃𝑠[𝑡]. This further suggests 𝑃 [𝑡] =

∑𝑆
𝑠=1 𝑃𝑠[𝑡]1{𝑐[𝑡]=𝑠} =∑𝑆

𝑠=1 𝑃𝑠[𝑡](1{𝑐[𝑡]=𝑠,𝑎[𝑡]=0} + 1{𝑎[𝑡]=𝑠}). Thus, the drift-plus-
penalty can be expressed as

𝐸

{
Ψ(𝑌𝑠[𝑡+1], 𝑍[𝑡+1])−Ψ(𝑌𝑠[𝑡], 𝑍[𝑡])

− 𝑉

𝑆∑
𝑠=1

𝑈𝑠(𝑥𝑠[𝑡])

∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
≤ 𝐼2max𝐾

2 + 𝑃 2
𝑝𝑒𝑎𝑘 + 𝑃 2

𝑎𝑣 − 2𝑍[𝑡]𝑃𝑎𝑣

+

𝑆∑
𝑠=1

𝐸

{
−𝑉 𝑈𝑠(𝑥𝑠[𝑡])+𝑥𝑠[𝑡]

2+2𝑌𝑠[𝑡]𝑥𝑠[𝑡]

∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}

+𝐸

{ 𝑆∑
𝑠=1

1{𝑐[𝑡]=𝑠,𝑎[𝑡]=0}
[− 2𝑌𝑠[𝑡]𝐼(ℎ𝑠[𝑡], 𝑃𝑠[𝑡])𝐾

+ 2𝑍[𝑡]𝑃𝑠[𝑡]
]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
+𝐸

{ 𝑆∑
𝑠=1

1{𝑎[𝑡]=𝑠}
[−2𝑌𝑠[𝑡]𝑅𝑠[𝑡]+2𝑍[𝑡]𝑃𝑠[𝑡]

]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
. (47)

Since 𝑄𝑠[𝑡] − 𝑀max ≤ 𝑌𝑠[𝑡] ≤ 𝑄𝑠[𝑡], from (18), we can
obtain

𝐸{−𝑉 𝑈𝑠(𝑥𝑠[𝑡]) + 𝑥𝑠[𝑡]
2 + 2𝑌𝑠[𝑡]𝑥𝑠[𝑡]∣𝑄𝑠[𝑡], 𝑍[𝑡]}

≤ 𝐸{−𝑉 𝑈𝑠(𝑥𝑠[𝑡]) + 𝑥𝑠[𝑡]
2 + 2𝑄𝑠[𝑡]𝑥𝑠[𝑡]∣𝑄𝑠[𝑡], 𝑍[𝑡]}

≤ 𝐸{−𝑉 𝑈𝑠(𝑥
∗
𝑠) + 𝑥∗

𝑠
2 + 2𝑄𝑠[𝑡]𝑥

∗
𝑠∣𝑄𝑠[𝑡], 𝑍[𝑡]}

≤ 𝐷2
𝑠 − 𝑉 𝑈𝑠(𝑥

∗
𝑠) + 2𝑄𝑠[𝑡]𝑥

∗
𝑠. (48)

If Algorithm NCA yields 𝑐[𝑡] = 0 and 𝑃 [𝑡] = 0 in slot 𝑡,
we have

0 ≤ 𝐸{2𝑄𝜍[𝑡][𝑡]𝐸h{𝐼(ℎ𝜍[𝑡][𝑡], 𝑃𝜍[𝑡][𝑡])𝐾∣ℎ̂𝜍[𝑡][𝑡]}∣𝑄𝑠[𝑡], 𝑍[𝑡]}

+𝐸

{
1{𝑐[𝑡]=0}

𝑆∑
𝑠=1

1{𝜍[𝑡]=𝑠}
[−2𝑄𝑠[𝑡]𝐾

× 𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃𝑠[𝑡])∣ℎ̂𝑠[𝑡]}+ 2𝑍[𝑡]𝑃𝑠[𝑡]
]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
(𝑎)

≤ 2𝑄𝜍[𝑡][𝑡]𝐾𝐸{𝐸h{𝐼(ℎ𝜍[𝑡][𝑡], 𝜀)∣ℎ̂𝜍[𝑡][𝑡]}∣𝑄𝑠[𝑡], 𝑍[𝑡]}

+𝐸

{
1{𝑐[𝑡]=0}

𝑆∑
𝑠=1

1{𝑐∗[𝑡]=𝑠}
[−2𝑄𝑠[𝑡]𝐾

× 𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃
∗[𝑡])∣ℎ̂𝑠[𝑡]}+ 2𝑍[𝑡]𝑃 ∗[𝑡]

]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
(𝑏)

≤ 𝑉 max
𝑠

{𝑏𝑠}𝐾𝐶𝜀+𝐸

{
1{𝑐[𝑡]=0}

𝑆∑
𝑠=1

1{𝑐∗[𝑡]=𝑠}
[−2𝑄𝑠[𝑡]𝐾

× 𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃
∗[𝑡])∣ℎ̂𝑠[𝑡]}+ 2𝑍[𝑡]𝑃 ∗[𝑡]

]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
, (49)

where step (𝑎) is due to 𝑃𝜍[𝑡][𝑡] < 𝜀 and (16)-(17), step (𝑏) is
due to 𝑄𝑠[𝑡] ≤ 𝑏𝑠𝑉/2 in (38) and 𝐸h{𝐼(ℎ𝑠[𝑡], 𝜀)∣ℎ̂𝑠[𝑡]} ≤ 𝐶𝜀
by (3)-(4) and the concavity of 𝐼(ℎ𝑠, 𝑃 ).

Similarly, if 𝑐[𝑡] ≥ 1 and 𝑎[𝑡] = 0, we attain

𝐸

{ 𝑆∑
𝑠=1

1{𝑐[𝑡]=𝑠,𝑎[𝑡]=0}
[− 2𝑌𝑠[𝑡]𝐼(ℎ𝑠[𝑡], 𝑃𝑠[𝑡])𝐾

+ 2𝑍[𝑡]𝑃𝑠[𝑡]
]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
(𝑎)

≤ 𝐸

{
1{𝑐[𝑡]≥1,𝑎[𝑡]=0}

𝑆∑
𝑠=1

1{𝜍[𝑡]=𝑠}
[
2𝑀max𝐼max𝐾 − 2𝑄𝑠[𝑡]𝐾

× 𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃𝑠[𝑡])∣ℎ̂𝑠[𝑡]}+ 2𝑍[𝑡]𝑃𝑠[𝑡]
]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
(𝑏)

≤ 2𝑀max𝐼max𝐾 + 𝐸

{
1{𝑐[𝑡]≥1,𝑎[𝑡]=0}

𝑆∑
𝑠=1

1{𝑐∗[𝑡]=𝑠}
[− 2𝑄𝑠[𝑡]𝐾

× 𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃
∗[𝑡])∣ℎ̂𝑠[𝑡]}+ 2𝑍[𝑡]𝑃 ∗[𝑡]

]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
, (50)

where step (𝑎) is due to 𝑄𝑠[𝑡]−𝑀max ≤ 𝑌𝑠[𝑡], 𝐼(ℎ𝑠, 𝑃𝑝𝑒𝑎𝑘) ≤
𝐼max, and 𝑐[𝑡] = 𝜍[𝑡], and step (𝑏) is due to (16) and (17).

If 𝑐[𝑡] = 𝑎[𝑡] ≥ 1, the last term of (47) satisfies

𝐸

{ 𝑆∑
𝑠=1

1{𝑎[𝑡]=𝑠}
[−2𝑌𝑠[𝑡]𝑅𝑠[𝑡]+2𝑍[𝑡]𝑃𝑠[𝑡]

]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}

≤ 𝐸

{ 𝑆∑
𝑠=1

1{𝑎[𝑡]=𝑠}2𝑍[𝑡]𝑃𝑠[𝑡]

∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
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=𝐸

{ 𝑆∑
𝑠=1

1{𝑎[𝑡]=𝑠}
[
2𝑄𝑠[𝑡]𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃𝑠[𝑡])∣ℎ̂𝑠[𝑡]}𝐾

−2𝑄𝑠[𝑡]𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃𝑠[𝑡])∣ℎ̂𝑠[𝑡]}𝐾 + 2𝑍[𝑡]𝑃𝑠[𝑡]
]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
(𝑎)
= 𝐸

{
1{𝑎[𝑡]≥1}

𝑆∑
𝑠=1

1{𝜍[𝑡]=𝑠}
[
2𝑄𝑠[𝑡]𝐾𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃𝑠[𝑡])∣ℎ̂𝑠[𝑡]}

−2𝑄𝑠[𝑡]𝐾𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃𝑠[𝑡])∣ℎ̂𝑠[𝑡]}+ 2𝑍[𝑡]𝑃𝑠[𝑡]
]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
(𝑏)

≤ 2𝐾𝐸

{
1{𝑎[𝑡]≥1} max

𝑠

[
𝑄𝑠[𝑡]𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃𝑠[𝑡])∣ℎ̂𝑠[𝑡]}

]∣∣∣∣
𝑄𝑠[𝑡], 𝑍[𝑡]

}
+𝐸

{
1{𝑎[𝑡]≥1}

𝑆∑
𝑠=1

1{𝑐∗[𝑡]=𝑠}
[−2𝑄𝑠[𝑡]𝐾

× 𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃
∗[𝑡])∣ℎ̂𝑠[𝑡]}+ 2𝑍[𝑡]𝑃 ∗[𝑡]

]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
(𝑐)

≤ 𝑉 max
𝑠

{𝑏𝑠}𝐾𝐼max𝐸{1{𝑎[𝑡]≥1}∣𝑄𝑠[𝑡], 𝑍[𝑡]}

+𝐸

{
1{𝑎[𝑡]≥1}

𝑆∑
𝑠=1

1{𝑐∗[𝑡]=𝑠}
[−2𝑄𝑠[𝑡]𝐾

× 𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃
∗[𝑡])∣ℎ̂𝑠[𝑡]}+ 2𝑍[𝑡]𝑃 ∗[𝑡]

]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
, (51)

where step (𝑎) is due to 𝑐[𝑡] = 𝑎[𝑡] = 𝜍[𝑡], step (𝑏) is due
to (16)-(17), and step (𝑐) is due to 𝐼(ℎ𝑠, 𝑃𝑝𝑒𝑎𝑘) ≤ 𝐼max and
𝑄𝑠[𝑡] ≤ 𝑏𝑠𝑉/2 in (38).

Taking the summation of the last terms in (49)-(51), we
obtain

𝐸

{
(1{𝑐[𝑡]=0}+1{𝑐[𝑡]≥1,𝑎[𝑡]=0}+1{𝑎[𝑡]≥1})

𝑆∑
𝑠=1

1{𝑐∗[𝑡]=𝑠}
[−2𝑄𝑠[𝑡]𝐾

× 𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃
∗[𝑡])∣ℎ̂𝑠[𝑡]}+ 2𝑍[𝑡]𝑃 ∗[𝑡]

]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
(𝑎)
= 𝐸

{ 𝑆∑
𝑠=1

1{𝑐∗[𝑡]=𝑠}
[−2𝑄𝑠[𝑡]𝐾𝐸h{𝐼(ℎ𝑠[𝑡], 𝑃

∗[𝑡])∣ℎ̂𝑠[𝑡]}

+ 2𝑍[𝑡]𝑃 ∗[𝑡]
]∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}
(𝑏)
=−2𝑄𝑠[𝑡]

𝑆∑
𝑠=1

𝐸{𝐼(ℎ𝑠[𝑡], 𝑃
∗[𝑡])𝐾1{𝑐∗[𝑡]=𝑠}}+2𝑍[𝑡]𝐸{𝑃 ∗[𝑡]}, (52)

where step (𝑎) is due to 1{𝑐[𝑡]=0}+1{𝑐[𝑡]≥1,𝑎[𝑡]=0}+1{𝑎[𝑡]≥1} =

1, step (𝑏) is due to the fact that {ℎ𝑠[𝑡], ℎ̂𝑠[𝑡]} and the
stationary and randomized control scheme {𝑃 ∗[𝑡], 𝑐∗[𝑡]} are
independent of 𝑄𝑠[𝑡], 𝑍[𝑡].

By substituting (48)-(52) back to (47), and invoking Lemma
4 with 𝛿 → 0, we can derive

𝐸

{
Ψ(𝑌𝑠[𝑡+1], 𝑍[𝑡+1])−Ψ(𝑌𝑠[𝑡], 𝑍[𝑡])

− 𝑉

𝑆∑
𝑠=1

𝑈𝑠(𝑥𝑠[𝑡])

∣∣∣∣𝑄𝑠[𝑡], 𝑍[𝑡]

}

≤ 𝐼2max𝐾
2 + 𝑃 2

𝑝𝑒𝑎𝑘 + 𝑃 2
𝑎𝑣 +

𝑆∑
𝑠=1

𝐷2
𝑠 − 𝑉 𝑜𝑝𝑡∗

+2𝑀max𝐼max𝐾 + 𝑉 max
𝑠

{𝑏𝑠}𝐶𝐾𝜀

+𝑉 max
𝑠

{𝑏𝑠}𝐾𝐼max𝐸{1{𝑎[𝑡]≥1}∣𝑄𝑠[𝑡], 𝑍[𝑡]}

= 𝑉 𝐵1𝜀+ 𝑉 𝐵2𝐸{1{𝑎[𝑡]≥1}∣𝑄𝑠[𝑡], 𝑍[𝑡]}+𝐵3 − 𝑉 𝑜𝑝𝑡∗,

and the asserted statement is proved.
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